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Various types of fuels and vehicle technology options

which are differently well suited for the different transport modes, where the dashed amows indicate pathways that currently are CHALMERS
more complex, less mature or less used.

Liquid fuels > Internal Aviation
(e.g., methanol, combustion
ethanol, biodiesel) engine, mild Maritime
Biomass hybrid and gas
(e.g., ligno-cellulosic, 3 Methane R turbines N XS . .
algae, crops rich in / (e.g., biogas, SNG) KRN ' Working machines
biooil, starch and i Y Fuel cell IR0 A
sugar, waste) ._-'. :.'.4 Ammonia 5 ‘.: ® ":,. ':' Heavy duty road
T - I 3 e.g., long-haul trucks,
:. Hyd rogen / Battery eleftr'c o X disscritgmtiongtrucks, busses,)
Fossil-free i - ] anc_:l plugin i
power sources Production of Electrolysis Viiite ba_ttery Light-duty road
(e.g., solar, wind, electrofuels 7 electric (two-wheelers, three-wheelers,
nuclear) Water cars, mini-vans)
co, Inductive and
conductive Rail
Electricity electric (train, tram)
ENERGY TO BE CONVERTED ENERGY CARRIERS PROPULSION TECHNOLOGIES TRANSPORT MODES

Brynolf S, Grahn M (2024). Liquid fuels: Flexibility with low environmental impact. News and Views. Nature Energy 9, 1179-1180. https://doi.org/10.1038/s41560-024-01637-0.



https://doi.org/10.1038/s41560-024-01637-0
https://doi.org/10.1038/s41560-024-01637-0
https://doi.org/10.1038/s41560-024-01637-0
https://doi.org/10.1038/s41560-024-01637-0
https://doi.org/10.1038/s41560-024-01637-0
https://doi.org/10.1038/s41560-024-01637-0
https://doi.org/10.1038/s41560-024-01637-0

Main insights from our research
on hydrogen
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The future role of hydrogen trucks in
an energy systems context

where different energy sectors compete for the same primary energy sources

Kanchiralla FM, Brynolf S, de Oliveira Laurin M, Grahn M (20267?). Decarbonization of the global road freight: results from global

energy systems cost-minimizing modeling. Manuscript in preparation.
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The global energy transition (GET) model

GET1s a linearly programmed energy systems cost-minimizing model, and it generates the fuel and
technology mix that meets the demand (subject to the constraints) at lowest global energy system cost.

Time span 100 years, time steps of 10 years. 10 regions.
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5 different climate scenarios &
2 hydrogen learning curves
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5 different truck categories

5 different hydrogen powertrains

(RD=Regional Delivery, LH=Long-haul)

ICEngines, fuel cell, fuel cell range extended, hybrid and plugin hybrid engines

Kanchiralla FM, Brynolf S, de Oliveira Laurin M, Grahn M (20267). Decarbonization of the global road freight: results from global energy systems cost-minimizing modeling. Manuscript in preparation.



Cost-effective fuel and technology choices for global truck fleets

meeting 1.5 degree climate target (scenario Ambitiuos).
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+ Hydrogen has a role to play in the
global truck fleet along with batteries
especially for long- hauls, when meeting
ambitious climate targets.

» Cost of hydrogen technologies
important for fuel cell adoption

* The model shows a larger share of
battery electric trucks for trucks segment
having shorter driving distances.

» Hydrogen first and foremost a cost-
effective solution for long-haul trucks.

== Diesel

== Hydrogen

== Electricity

Acronyms used: H2= hydrogen, ICE=internal combustion

engines, FC=fuel cell, REEV=range extension,
BEV=battery electric vehicle, EJ=10"8 Joule

Kanchiralla FM, Brynolf S, de Oliveira Laurin M, Grahn M (20267?).
Decarbonization of the global road freight: results from global energy
systems cost-minimizing modeling. Manuscript in preparation.
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Comparing carbon
footprint from using
hydrogen in trucks?

Velandia Vargas, J.E., Brynolf, S., Grahn, M., Rodriguez, F., Blekhman, D.
(2025). Vehicle-oriented and Sweden-framed life cycle assessment: Hydrogen
for long-haul trucks, iScience 28(10), 113607, doi:
https://doi.org/10.1016/j.isci.2025.113607.
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\?elandia Vargas, J.E., Brynolf, S., Grahn, M., Rodriguez, F., Blekhman, D. (2025). Vehicle-oriented and Sweden-framed life cycle assessment: Hydrogen for long-haul trucks, iScience 28(10), 113607



Assessed distribution options
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A: Trailer-gas 1100 kg (500 bar)
150 km

B: Trailer-liquid 4300 kg
(-253°C) 150 km

C: Pipeline-gas (70 bar) 150 km

D: Vessel run on biodiesel
(-253°C) 14,600 km

Onsite production: No
distribution.

Velandia Vargas, J.E., Brynolf, S., Grahn, M., Rodriguez, F., Blekhman,

D. (2025). Vehicle-oriented and Sweden-framed life cycle assessment: Hydrogen for long-haul trucks, iScience 28(10), 113607



Total LCA carbon footprint per tkm of a fully loaded

CHALMERS

40-ton truck run on hydrogen

comparison of multiple hydrogen production and distribution pathways, combined with different types of fuel celland combustion engine hydrogen trucks.

60 . . .
Truck configuration: 200 kW fuel cell - 140 kWh battery, * Apart from the bio based options with CCS,
lowest carbon footprint can be seen for:

50
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produced in central plants, and powered by
green electricity, then liquefied and
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produced from green electricity, at the
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Velandia Vargas, J.E., Brynolf, S., Grahn, M., Rodriguez, F., Blekhman, D. (2025). Vehicle-oriented and Sweden-framed life cycle assessment: Hydrogen for long-haul trucks, iScience 28(10), 113607
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Geospatial distribution of hydrogen demand and refueling infrastructure
for long-haul trucks in Europe
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Routes for 600,000 trucks are modelled individually
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* One simulated route. The x-axis represents distance driven along the route.
 Elevation (green) and velocity (brown) impacts power (red), which results in a total cumulative fuel demand (black).
* Light blue bar indicate the power needed is negative (regenerative braking).

* Refueling demand allocated to nodes along the route is depicted with vertical shaded areas. Speed limit (blue) is
included to specify where the truck runs slower than the speed limit.

Lofving J, Brynolf S, Grahn M (2025). Geospatial distribution of hydrogen demand and refueling infrastructure for long-haul trucks in Europe, International Journal of Hydrogen Energy 128: 544-558.



Annual hydrogen demand per country for three different tank sizes,
assuming 15% of the fleet of trucks are run on hydrogen

2050 Tank 60kg

TWhlyear

0.09, 0.34
0.34, 0.59
0.59, 0.83
0.83,1.08
1.08, 1.32
1.32,1.57
1.57,.1.81
1.81, 2.06
2.06, 2.31
2.31, 2.55

Share of routes and tkm, respectively, that can be performed without refueling on-route given the different tank sizes.

Tank size 60 kg 75 kg 90 kg
Routes 27% 40% 52%
Tkm 34% 45% 55%
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Insight:

* The largest demand is shown in
central Europe.

* The different tank sizes do not
significantly affect the results.

Lofving J, Brynolf S, Grahn M (2025). Geospatial distribution of hydrogen demand and refueling infrastructure for long-haul trucks in Europe, International Journal of Hydrogen Energy 128: 544-558.
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Where in Europe (geographically) may
the future hydrogen demand appear?

Lofving J, Brynolf S, Grahn M, Oberg S, Taljegard M (2025). Consequences of large-scale hydrogen use in Europe. Under review at Nature Sustainability.
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1
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Ports
using the SVENG (Simulating Vehicle Energy Needs Geospatially) model

u
M Odel I I n futu re Annual demand volume indicated by node size.
Steel Facilities

Refueling stations (HRS)

Python programmed GIS-oriented model, analyzing future
geo-spacial hydrogen demand in Europe.

o Can handle large amounts of logistics data and scales linearly.
For this study including about 0.6 million long-haul truck routes.

o Can handle a detailed road network. For this study including
17,000 nodes.

o Includes algorithms for simulating locations and sizing
ofhydrogen refueling stations.

o Hydrogen demand added for ports, airports, refineries,
production sites for ammonia, high-value chemicals and steel.

GIS: Geographic Information System (consists of integrated computer hardware
and software that store, manage, analyze, edit, output, and visualize geographic data).

Léfving J, Brynolf S, Grahn M, Oberg S, Taljegard M (2025). Consequences of large-scale hydrogen use in Europe. Under review at Nature Sustainability.



CHALMERS

UNIVERSITY OF TECHNOLOGY

Summing up



General insights on future fuels, so far

Three types of energy carriers have the potential to substantially reduce the
fossil CO, emissions from the transportation sector:

Fuels including carbon atoms (biofuels and electrofuels)
Fuels without carbon atoms (hydrogen and ammonia)
Battery-electric propulsion

It is most likely that parallel solutions will be developed, e.g.

There are many advantages for electric solutions in cities, both hydrogen in fuel cells and battery
electric propulsion. Meeting also aspects like reduction of NOx, soot, and noise. Most likely
different electric solutions in cities (delivery trucks, electric buses, cars, trams, metro etc).

There are several challenges for electrifying long-distance transport (especially ships and aircraft).
Electrofuels may complement biofuels for these transport modes.

Irrespective of fuel type, CO, emissions can be reduced by more energy efficient
vehicles and measurements towards reduced transport demand.
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~ For more info, please contact
Tomas Gronstedt
tomas.gronstedt@chalmers.se

Technologies and innovations for a future sustainable hydrogen economy,
a competence center funded by the Swedish energy agency, industrial partners, Chalmers and RISE.
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