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Main insights from our research 
on hydrogen



The future role of hydrogen trucks in 
an energy systems context
where different energy sectors compete for the same primary energy sources

Kanchiralla FM, Brynolf S, de Oliveira Laurin M, Grahn M (2026?). Decarbonization of the global road freight: results from global 
energy systems cost-minimizing modeling. Manuscript in preparation. 

Fayas Malik Kanchiralla, Postdoc, 
fayas.kanchiralla@chalmers.se 

mailto:fayas.kanchiralla@chalmers.se
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• Hydrogen has a role to play in the 
global truck fleet along with batteries 
especially for long- hauls, when meeting 
ambitious climate targets.

• Cost of hydrogen technologies 
important for fuel cell adoption

• The model shows a larger share of 
battery electric trucks for trucks segment 
having shorter driving distances.

• Hydrogen first and foremost a cost-
effective solution for long-haul trucks. 

Cost-effective fuel and technology choices for global truck fleets
meeting 1.5 degreeclimatetarget(scenario Ambitiuos).
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Acronyms used: H2= hydrogen, ICE=internal combustion 
engines, FC=fuel cell, REEV=range extension, 
BEV=battery electric vehicle, EJ=1018 Joule

Kanchiralla FM, Brynolf S, de Oliveira Laurin M, Grahn M (2026?). 
Decarbonization of the global road freight: results from global energy 
systems cost-minimizing modeling. Manuscript in preparation. 



Comparing carbon 
footprint from using 
hydrogen in trucks?
Velandia Vargas, J.E., Brynolf, S., Grahn, M., Rodriguez, F., Blekhman, D. 
(2025). Vehicle-oriented and Sweden-framed life cycle assessment: Hydrogen 
for long-haul trucks, iScience 28(10), 113607, doi: 
https://doi.org/10.1016/j.isci.2025.113607.

Jorge Velandia Vargas.
jorge.velandia@chalmers.se 
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System 
boundaries

Velandia Vargas, J.E., Brynolf, S., Grahn, M., Rodriguez, F., Blekhman, D. (2025). Vehicle-oriented and Sweden-framed life cycle assessment: Hydrogen for long-haul trucks, iScience 28(10), 113607



Velandia Vargas, J.E., Brynolf, S., Grahn, M., Rodriguez, F., Blekhman, D. (2025). Vehicle-oriented and Sweden-framed life cycle assessment: Hydrogen for long-haul trucks, iScience 28(10), 113607

A: Trailer-gas 1100 kg (500 bar) 
150 km

B: Trailer-liquid 4300 kg           
(-253oC) 150 km

C: Pipeline-gas (70 bar) 150 km

D: Vessel run on biodiesel        
(-253oC) 14,600 km

Onsite production: No 
distribution.

Assessed distribution options



Total LCA carbon footprint per tkm of a fully loaded 
40-ton truck run on hydrogen 

Velandia Vargas, J.E., Brynolf, S., Grahn, M., Rodriguez, F., Blekhman, D. (2025). Vehicle-oriented and Sweden-framed life cycle assessment: Hydrogen for long-haul trucks, iScience 28(10), 113607

A: Trailer-gas 1100 kg (500 bar) 150 km
B: Trailer-liquid 4300 kg (-253oC) 150 km
C: Pipeline-gas (70 bar) 150 km
D: Vessel run on biodiesel (-253oC) 14,600 km

• Apart from the bio-based options with CCS, 
lowest carbon footprint can be seen for:
1. Scenario B where hydrogen is large-scale 

produced in central plants, and powered by 
green electricity, then liquefied and 
distributed by trailers for 150 km and used 
in fuel cell trucks having a stainless steel 
tank for liquid hydrogen, 

2. Scenario “onsite” where hydrogen is 
produced from green electricity, at the 
refueling station, and used in fuel cell trucks 
having a 350 bar storage tank,

3. the same as (2) but a 700 bar storage tank. 
• Highest carbon footprint is seen from all 

options assessing blue hydrogen. Slightly 
higher for the combustion engines (ICET) 
compared to fuel cells (FCT).

• All options are below carbon footprint of fossil 
diesel (55-150 gCO2eq/tkm).

comparison of multiple hydrogen production and distribution pathways, combined with different types of fuel cell and combustion engine hydrogen trucks.

Green H2

Truck configuration: 200 kW fuel cell - 140 kWh battery

Sum without lossesMaintenanceUseDistrib.TruckH2 production

Swedish grid Green H2 Blue H2 Swedish grid Green H2 Blue H2 Swedish gridSg G B G B
A CB D On-site

Hydrogen leakages, for low and high 
estimations, are represented by red circles 
and purple triangles, respectively



Where in Europe may the 
demand for future hydrogen 
refuelling stations for trucks 
appear?
Löfving J, Brynolf S, Grahn M (2025). Geospatial distribution of hydrogen demand 
and refueling infrastructure for long-haul trucks in Europe, International Journal of 
Hydrogen Energy 128: 544-558. 

Joel Löfving PhD student,
 joel.lofving@chalmers.se 

mailto:oskar.johansson@chalmers.se


Routes for 600,000 trucks are modelled individually

• One simulated route. The x-axis represents distance driven along the route. 

• Elevation (green) and velocity (brown) impacts power (red), which results in a total cumulative fuel demand (black).

• Light blue bar indicate the power needed is negative (regenerative braking).

• Refueling demand allocated to nodes along the route is depicted with vertical shaded areas. Speed limit (blue) is 
included to specify where the truck runs slower than the speed limit.

Löfving J, Brynolf S, Grahn M (2025). Geospatial distribution of hydrogen demand and refueling infrastructure for long-haul trucks in Europe, International Journal of Hydrogen Energy 128: 544-558. 



Annual hydrogen demand per country for three different tank sizes, 
assuming 15% of the fleet of trucks are run on hydrogen

Share of routes and tkm, respectively, that can be performed without refueling on-route given the different tank sizes.

Tank size 60 kg 75 kg 90 kg

Routes 27% 40% 52%

Tkm 34% 45% 55%

Insight: 
• The largest demand is shown in 

central Europe.
• The different tank sizes do not 

significantly affect the results.

Löfving J, Brynolf S, Grahn M (2025). Geospatial distribution of hydrogen demand and refueling infrastructure for long-haul trucks in Europe, International Journal of Hydrogen Energy 128: 544-558. 



Where in Europe (geographically) may 
the future hydrogen demand appear?

Löfving J, Brynolf S, Grahn M, Öberg S, Taljegård M (2025). Consequences of large-scale hydrogen use in Europe. Under review at Nature Sustainability. 

Joel Löfving PhD student,
 joel.lofving@chalmers.se 

mailto:oskar.johansson@chalmers.se


Modelling future
demand for hydrogen 
in Europe, 2050
using the SVENG (Simulating VehicleEnergy Needs Geospatially) model

Löfving J, Brynolf S, Grahn M, Öberg S, Taljegård M (2025). Consequences of large-scale hydrogen use in Europe. Under review at Nature Sustainability. 

Python programmed GIS-oriented model, analyzing future
geo-spacial hydrogen demand in Europe.
o Can handle large amounts of logistics data and scales linearly. 

For this study including about 0.6 million long-haul truck routes. 

o Can handle a detailed road network. For this study including
17,000 nodes.

o Includes algorithms for simulating locations and sizing
ofhydrogen refueling stations.

o Hydrogen demand added for ports, airports, refineries, 
production sites for ammonia, high-value chemicals and steel.

GIS: Geographic Information System (consists of integrated computer hardware 
and software that store, manage, analyze, edit, output, and visualize geographic data).

Annual demand volume indicated by node size.



Summing up



General insights on future fuels, so far
•Three types of energy carriers have the potential to substantially reduce the 

fossil CO2 emissions from the transportation sector:
• Fuels including carbon atoms (biofuels and electrofuels)
• Fuels without carbon atoms (hydrogen and ammonia) 
• Battery-electric propulsion

• It is most likely that parallel solutions will be developed, e.g.
• There are many advantages for electric solutions in cities, both hydrogen in fuel cells and battery 

electric propulsion. Meeting also aspects like reduction of NOx, soot, and noise. Most likely 
different electric solutions in cities (delivery trucks, electric buses, cars, trams, metro etc).

• There are several challenges for electrifying long-distance transport (especially ships and aircraft). 
Electrofuels may complement biofuels for these transport modes.

• Irrespective of fuel type, CO2 emissions can be reduced by more energy efficient 
vehicles and measurements towards reduced transport demand. 
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Technologies and innovations for a future sustainable hydrogen economy, 
a competence center funded by the Swedish energy agency, industrial partners, Chalmers and RISE. 
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